Disputation i data- och informationsvetenskap: Mehdi Saman Azari
Avhandlingens titel:
Data-driven Fault Diagnosis for Cyber-Physical Systems
Forskarutbildningsämne:
Data- och informationsvetenskap
Fakultet:
Fakulteten för teknik
Datum:
Fredag 9 maj 2025 kl 13:00
Plats för disputation:
M1083, Hus M, Växjö
Opponent:
Professor Mohammad Reza Mousavi, King’s College London
Betygsnämnd:
Professor Matthias Tichy, Ulm University
Docent Mirka Kans, Chalmers tekniska högskola
Professor Raffaela Mirandola, Karlsruhe Institute of Technology
Ordförande:
Professor Arianit Kurti, Linnéuniversitetet
Handledare:
Professor Jesper Andersson, Linnéuniversitetet
Examinator:
Professor Welf Löwe, Linnéuniversitetet
Spikning:
Tisdag 22 april 2025 kl 13:00 på Universitetsbiblioteket, Växjö
Abstract
As Industry 4.0 transforms manufacturing through smart, interconnected systems, the complexity of these environments increases vulnerability to faults, posing safety and financial risks. This thesis addresses these challenges by enhancing fault diagnosis using advanced machine learning, self-adaptive models, and digital twin technologies.
Three main objectives guide the study: (1) developing a robust diagnostic framework resilient to fault pattern variability and data imbalance, (2) enabling knowledge transfer across domains using digital twins and transfer learning, and (3) building a self-adaptive system to handle unseen and evolving working conditions.
The proposed solutions significantly improve fault diagnosis accuracy and adaptability, bridging the gap between research and real-world industrial deployment.