Profilbild

Karl-Olof Lindahl

Docent
Institutionen för matematik Fakulteten för teknik
0470-70 80 27
Hus B 2009
Spara kontaktuppgifter Ladda ner högupplöst bild

Hej och välkommen till min personalsida! Jag är doocent i matematik vid LNU. Jag även undervisat och forskat på Universidad de Santiago de Chile och Brown University, USA. 

Jag undervisar för närvarande på kurser som

  • Linjär algebra för ingenjörer
  • Tillämpad sannolikhetslära och statistik
  • Numeriska metoder
  • Forskningsmetodik för matematiska vetenskaper
  • P-adiska tal och p-adisk analys

Jag är även huvudhandledaare för en doktorand, Jonas Nordqvist, sedan 2015. 

Dynamiska system, Talteori, Algebra, Diskret matematik och Statistik.
Internationella samarbetspartners är Juan Rivera-Letelier (Rochester University), Mike Zieve (Univ. of Michigan), Charles Favre (École Polytechnique, Paris).
Förutom vid LNU har jag forskat som postdoc på Universidad de Santiago de Chile och Brown University, USA. 
Jag har även varit gästforskare vid Université de Picardie, Amiens

  • Koordinator för examensarbetesprocessen i matematik vid LNU.
  • Ledamot i styrelsen för fakulteten för teknik (FTK).



Förslag på ämnen för potentiella doktorandprojekt och examensarbeten

1. Periodic points and nonlinear phenomena in arithmetical dynamical systems (ADS).

Periodic phenomena or cycles arise in many systems that evolve with time; physical, biological, financial and technical. The theory of dynamical systems concerns mathematical models of such systems. Of particular interest is characterization of cycles and the border between periodic, quasi-periodic, and non-periodic behaviour.

In the simplest mathematical models the dynamics is modeled by function iteration; a given state of the system is transformed into a new state by a function. From the work of Henri Poincaré in the late nineteenth century it is known that such models can mimic the behaviour of very complex systems.

As a model, we focus on ADS where the evolution in time is modeled by iterations of functions defined over fields like the rational numbers, p-adic fields, fields of positive characteristic, or complex numbers. Proposed research questions concern linearizability near periodic points, normal forms, and geometric distribution of periodic points.

Outcomes of expected results of the project could serve as the foundation of a geometric approach for solving Poonen's conjecture, stating
that quadratic polynomials with rational coefficients cannot have rational periodic points of exact period greater than three. The conjecture is a fundamental case of the Morton-Silverman conjecture that is driving the field of ADS.

2. Computational algebra and dynamical systems over finite rings.

Since the introduction of the BBS pseudorandom number generator in the 1980's there has been an increasing interest in dynamical systems defined by function iteration over finite rings. Other motivations is security in ICT systems and Pollard's rho-algorithm for prime factorization.

Given a map f over a finite ring we can associate with f a directed graph over the elements in the ring. We propose to study periodic points, the number of invariant components of the corresponding graph, and statistical aspects of such systems. This will involve tools from computational algebra, (analytic) number theory, graph theory, statistics and probability theory.

Even if patterns in the dynamics of simple maps are often irregular, averages over different primes can have more regular behaviour. The project could also include statistical aspects including comparison between function iteration over finite fields and the statistics of random maps.

Publikationer

Artikel i tid­skrift (Referee­granskat)

Konferens­bidrag (Referee­granskat)

Doktors­avhandling, mono­grafi (Övrigt veten­skapligt)

Artikel, recension (Övrigt (populär­vetenskap, debatt))