Sebastian Hönel
Doktorand
Institutionen för datavetenskap och medieteknik
Fakulteten för teknik
- You will find me in building D, room D2236H.
- I have a public calendar where you will find my office hours at bit.ly/2XY1RZ1
Mina forskargrupper
-
Data Intensive Software Technologies and Applications (DISTA) Forskargruppen Data Intensive Software Technologies and Applications studerar datastyrda metoder, såsom maskininlärning, artificiell…
-
Data-driven Software and Information Quality På forskningsområdet Data-driven Software and Information Quality vill vi inom Linnaeus University Centre for Data Intensive Sciences and Applications…
Mina pågående forskningsprojekt
Publikationer
Artikel i tidskrift (Refereegranskat)
-
Hönel, S., Ericsson, M., Löwe, W., Wingkvist, A. (2020). Using source code density to improve the accuracy of automatic commit classification into maintenance activities. Journal of Systems and Software. 168. 1-19.
Status: Publicerad
Konferensbidrag (Refereegranskat)
- Hönel, S., Ericsson, M., Löwe, W., Wingkvist, A. (2022). Contextual Operationalization of Metrics as Scores : Is My Metric Value Good?. Proceedings of the 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). 333-343.
- Picha, P., Hönel, S., Brada, P., Ericsson, M., Löwe, W., et al. (2022). Process anti-pattern detection : a case study. Proceedings of the 27th European Conference on Pattern Languages of Programs, EuroPLop 2022, Irsee, Germany, July 6-10, 2022. 1-18.
- Hönel, S., Ericsson, M., Löwe, W., Wingkvist, A. (2019). Importance and Aptitude of Source code Density for Commit Classification into Maintenance Activities. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). 109-120.
- Ulan, M., Hönel, S., Martins, R.M., Ericsson, M., Löwe, W., et al. (2018). Quality Models Inside Out : Interactive Visualization of Software Metrics by Means of Joint Probabilities. Proceedings of the 2018 Sixth IEEE Working Conference on Software Visualization, (VISSOFT), Madrid, Spain, 2018. 65-75.
- Hönel, S., Ericsson, M., Löwe, W., Wingkvist, A. (2018). A changeset-based approach to assess source code density and developer efficacy. ICSE '18 Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. 220-221.
Dataset (Refereegranskat)
-
Hönel, S., Pícha, P., Brada, P., Rychtarova, L., Danek, J. (2023). Detection of the Fire Drill anti-pattern: 15 real-world projects with ground truth, issue-tracking data, source code density, models and code.
A dataset comprised of various files, such as CSV or Excel spreadsheets, notebooks, and code in R, pre-computed results as RDS, etc.
. -
Hönel, S. (2019). 359,569 commits with source code density; 1149 commits of which have software maintenance activity labels (adaptive, corrective, perfective).
A dataset as an SQL-importable file, compatible with MariaDB and MySQL.
.
Övrigt (Refereegranskat)
-
Hönel, S. (2020). mmb : Arbitrary Dependency Mixed Multivariate Bayesian Models.
mmb is a package for the R statistical software environment.
. -
Ulan, M., Hönel, S., Martins, R.M., Ericsson, M., Löwe, W., et al. (2018). Artifact: Quality Models Inside Out : Interactive Visualization of Software Metrics by Means of Joint Probabilities.
The artifact is a VirtualBox virtual machine (VM). Part of this bundle is a file with instructions. Please read those first.
.
Konferensbidrag (Övrigt vetenskapligt)
- Hönel, S., Ericsson, M., Löwe, W., Wingkvist, A. (2019). Bayesian Regression on segmented data using Kernel Density Estimation. 5th annual Big Data Conference : Linnaeus University, Växjö, Sweden, 5-6 December 2019.
Rapport (Övrigt vetenskapligt)
Övrigt (Övrigt vetenskapligt)
-
Hönel, S. (2020). Git Density : Analyze git repositories to extract the Source Code Density and other Commit Properties.
Git Density is a software suite to analyze git-repositories with the goal of detecting the source code density and other properties of the software, such as metrics.
.
Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
- Hönel, S. (2020). Efficient Automatic Change Detection in Software Maintenance and Evolutionary Processes. Licentiate Thesis. Växjö, Faculty of Technology, Linnaeus University. 37.